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The irrotational flow past two slender bodies of revolution at angles of yaw, translating
in parallel paths in very close proximity, is analysed by extending the classical slender
body theory. The flow far away from the two bodies is shown to be a direct problem,
which is represented in terms of two line sources along their longitudinal axes, at
the strengths of the variation rates of their cross-section areas. The inner flow near
the two bodies is reduced to the plane flow problem of the expanding (contracting)
and lateral translations of two parallel circular cylinders with different radii, which is
then solved analytically using conformal mapping. Consequently, an analytical flow
solution has been obtained for two arbitrary slender bodies of revolution at angles of
yaw translating in close proximity. The lateral forces and yaw moments acting on the
two bodies are obtained in terms of integrals along the body lengths. A comparison
is made among the present model for two slender bodies in close proximity, Tuck
& Newman’s (1974) model for two slender bodies far apart, and VSAERO (AMI)–
commercial software based on potential flow theory and the boundary element method
(BEM). The attraction force of the present model agrees well with the BEM result,
when the clearance, h0, is within 20 % of the body length, whereas the attraction
force of Tuck & Newman is much smaller than the BEM result when h0 is within
30 % of the body length, but approaches the latter when h0 is about half the body
length. Numerical simulations are performed for the three typical manoeuvres of two
bodies: (i) a body passing a stationary body, (ii) two bodies in a meeting manoeuvre
(translating in opposite directions), and (iii) two bodies in a passing manoeuvre
(translating in the same direction). The analysis reveals the orders of the lateral forces
and yaw moments, as well as their variation trends in terms of the manoeuvre type,
velocities, sizes, angles of yaw of the two bodies, and their proximity, etc. These
irrotational dynamic features are expected to provide a basic understanding of this
problem and will be beneficial to further numerical and experimental studies involving
additional physical effects.

1. Introduction
The hydrodynamic interaction between two slender bodies poses an interesting

theoretical problem, where the fluid domain is complex and varying with time. Its
study is of practical importance in the context of interactions of two marine vessels (cf.
Tuck & Newman 1974; Yeung & Hwang 1977; Yeung & Tan 1980; Korsmeyer, Lee &
Newman 1993), where the attraction between the two vessels may be comparable to
the buoyancies acting on them. It also has applications for high-speed trains moving
in very close proximity (cf. Kikuchi, Maeda & Yanagizawa 1996; Yang & Luh 1998;
Liu 2004). In fact, the attraction between two trains translating at speeds of 360 mph
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in very close proximity may be three orders of magnitude larger than the air
buoyancies acting on them (cf. Wang 2005). Applications also include understanding
dolphin mother–calf interactions, to identify possible reasons for loss of contact
between mother and calf during chases (Weihs 2004).

Numerical modelling of two-body interaction has been performed, mainly based on
the potential flow theory and boundary element method, by Landweber, Chwang &
Guo (1991), Guo & Chwang (1992), Korsmeyer et al. (1993), Kikuchi et al. (1996),
Yang & Luh (1998), and Fang & Chen (2002), among others. The numerical approach
has the advantage of handling general geometry, but it is inaccurate or even singular
when the two bodies are in very close proximity (Tuck 1980; Guo & Chwang 1992).

This work concerns the theoretical study of the interaction of two slender bodies
using slender body theory. A few decades ago, the slender body theory was one
of the most popular theorems in aerodynamics as well as marine hydrodynamics
(cf. Munk 1924; Van Dyke 1959; Lighthill 1960; Newman & Wu 1975). Although
powerful modern computational capabilities allow us to compute the flow around
bodies of arbitrary shapes, slender body theory remains very useful to predict and
explain the main features of flow around slender bodies. It has been applied in recent
years to analyse flows past slender bodies with complex geometries or physical effects
(cf. Faltinsen, Newman & Vinje 1995; Sellier 1997; Becker, Koehler & Stone 2003;
Fontaine, Faltinsen & Cointe 2000; Chen, Sharma & Stuntz 2003).

A few theoretical studies on the interaction of two moving slender bodies have
been performed based on the classical slender body theory. Tuck & Newman (1974),
Yeung & Hwang (1977), Yeung & Tan (1980) and Cohen & Beck (1983) analysed a
ship moving near another ship or bank, assuming that the clearance between them
was comparable with the ship length. The two bodies are therefore in each other’s
far-field and their interactions can be approximated using the far-field asymptotic
approximations of the slender body theory. Miloh & Hauptman (1980) analysed an
elongated spheroid moving near a flat wall or a free surface at low Froude numbers
using the Havelock method.

Alternatively, Newman (1965) studied a slender body of revolution at zero incidence
moving in very close proximity to a flat wall, by representing the flow in terms of a
curved line source along the body, together with its image at the wall. Wang (2005)
extended Newman’s work to a slender body of revolution at angles of attack and
yaw moving in very close proximity to curved ground, using the method of matched
asymptotic expansions.

As a development of the above theoretical works, this study concerns the strong
interaction between two slender bodies at angles of yaw translating in parallel paths
in very close proximity. Owing to the difficult mathematical treatment for arbitrary
shaped bodies, this paper is focused on two slender bodies of revolution. We assume
that the radii and yaw angles of the two bodies and the clearance between them
are of the same order and small quantities compared to their lengths. This work is
based on the potential flow theory too, since it provides a good approximation for
high-Reynolds-number flows.

The remainder of the paper is organized as follows. In § 2, the flow field is divided
into an outer region far away from the two bodies and an inner region near the two
bodies, and is analysed using the method of matched asymptotic expansions. The
outer flow is shown to be a direct problem. The inner flow is reduced to the plane
flow problem of the expanding (contracting) and lateral translations of two parallel
circular cylinders, which is then solved analytically using conformal mapping. The
formulae for the lateral forces and yaw moments acting on the two bodies are derived
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Figure 1. The configuration and coordinate system for two slender bodies of revolution at
angles of yaw translating on parallel paths in close proximity.

in § 3. In § 4, the analytical results are first compared to those of VSAERO (AMI), a
well-validated boundary element modelling, for the case of two equal slender bodies
of revolution in symmetrical motion. Numerical analyses are then carried out for
the three typical manoeuvres of two bodies: (i) two bodies in a meeting manoeuvre,
(ii) two bodies in a passing manoeuvre, and (iii) a body moving near a stationary
body. Section 5 contains a summary of this work and conclusions.

2. Analytical flow solution
2.1. Mathematical modelling

Consider two slender bodies of revolution at small angles of yaw, translating on
parallel paths in very close proximity, as shown in figure 1. The length scale L is
chosen as the length of the longer body and the time scale as L/U , where U is
the translation speed of the faster body. Normalization is performed for all of the
quantities used subsequently. A ground-fixed Cartesian coordinate system O-xyz is
defined, with the origin O at the centre of body 1 initially, and the x-axis opposite
to the direction of motion of the faster body. Denote the normalized lengths of the
two bodies as 2L1 and 2L2, the angles of yaw as α∗

1 and α∗
2 , and the normalized

translation velocities as −U1 and −U2, respectively.
Let the two bodies start to overlap at t = 0, when the x-coordinates of their two

closer ends are equal. As the x-axis is chosen opposite to the direction of motion
of the faster body, the faster body is always behind the slower body initially in the
direction of the faster body motion. The passing/meeting period of the two bodies
is 2(L1 + L2)/|U1 − U2|. This choice is based on the fact that, to the first-order
approximation, two slender bodies interact only when their cross-sections overlap.

Denote x1 as the x-coordinate relative to the centre xc1(t) of body 1,

x1 = x − xc1(t) = x + U1t, xc1(t) = −U1t. (1)

Denote x2 as the x-coordinate relative to the centre xc2(t) of body 2. Then, we have

x2 = x − xc2(t), xc2(t) =

{
L1 + L2 − U2t for |U1| < |U2|,
−L1 − L2 − U2t for |U1| � |U2|. (2)

The initial position of the centre of body 2 is thus xc2(0) = L1 + L2 when body 2 is
the faster body, and is xc2(0) = −L1 − L2 when body 2 is the slower body.



226 Q. X. Wang

The surfaces of two bodies, B1 and B2, can be expressed as√
y2 + (x1 sinα∗

1 + z cosα∗
1)

2 = a1(x1 cos α∗
1 − z sin α∗

1)

for |x1 cos α∗
1 − z sin α∗

1 | � L1, (3)√
y2 + (x2 sinα∗

2 + z cos α∗
1 + h0)2 = a2(x2 cos α∗

2 − z sin α∗
2)

for |x2 cosα∗
2 − z sinα∗

2 | � L2, (4)

where h0 is the lateral distance between the centres of the two bodies, and a1(ξ ) and
a2(ξ ) are the radius distributions of the transverse cross-sections of the two bodies,
which are required to be smooth functions and vanished at their noses.

Note that the configuration defined in (1)–(4) is suitable for all three typical
manoeuvre cases of two bodies translating on parallel paths: (i) a body moving near
a stationary body (where U1 = 0 or U2 = 0), (ii) two bodies in a meeting manoeuvre
(U1U2 < 0), and (iii) two bodies in a passing manoeuvre (U1U2 > 0).

This problem can be modelled using slender body theory for two situations. One
is when the clearance between the two bodies is comparable with the body lengths,
and consequently the two bodies are in each other’s far field. Their interactions can
be approximated using the far-field asymptotic approximations of the slender body
theory. This situation has been studied by Tuck & Newman (1974), Yeung & Hwang
(1978), Yeung & Tan (1980) and Cohen & Beck (1983).

The other situation to be studied here is when the two slender bodies are in each
other’s near field. The minimum longitudinal scale of the problem is the length of the
longer body, and the transverse scale B is the lateral distance between their centres
plus the sum of the maximum radii. When considering both the bodies in the near
field, one must assume that the transverse scale B is much smaller than the horizontal
scale L, i.e.

B

L
= O(ε), ε � 1. (5)

This implies that the angles of yaw α∗
1 , α∗

2 and normalized radii a1(x), a2(x) of the two
bodies, and the normalized transverse distance h0 between their geometrical centres
are small quantities, which we assume of the same order,

a1(x), a2(x), α∗
1 , α∗

2 , h0 = O(ε). (6a)

We therefore can express those quantities as

(a1(x), a2(x), α∗
1 , α∗

2 , h0) = ε(A1(x), A2(x), α1, α2, H0), (6b)

where A1(x), A2(x), α1, α2, H0 = O(1).
The slenderness parameter ε should be chosen as the ratio of B/L, but it varies

with the relative positions of the two bodies. With assumption (6a), ε can be chosen
as the ratio of the maximum diameter D to the length L of the longer body.

We also introduce the physical assumptions that the fluid is inviscid and
incompressible, and the flow is irrotational. A velocity potential ϕ (x, y, z, t) thus
exists in the fluid domain bounded by the two bodies, and satisfies the Laplace
equation in the fluid domain

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0, (7a)
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subject to the following boundary conditions: ∇ϕ is required to vanish at infinity; the
impermeable boundary conditions on the surfaces of the two bodies are

y
∂ϕ

∂y
+ (x1 sinα∗

1 + z cos α∗
1) cosα∗

1

∂ϕ

∂z

= a1a1x

(
U1 +

∂ϕ

∂x

)
cos α∗

1 −
(

U1 +
∂ϕ

∂x

)
(x1 sinα∗

1 + z cosα∗
1) sinα∗

1 on B1, (7b)

y
∂ϕ

∂y
+ (x2 sinα∗

2 + z cos α∗
2 + h0) cosα∗

2

∂ϕ

∂z

= a2a2x

(
U2 +

∂ϕ

∂x

)
cos α∗

2 −
(

U2 +
∂ϕ

∂x

)
(x2 sinα∗

2 + z cosα∗
2 + h0) sinα∗

2 on B2.

(7b)

The above assumptions appear reasonable for flow problems of large marine
vessels and very high-speed trains, which are usually streamlined slender bodies. The
Reynolds numbers Re of these flow problems in terms of body length L are often
of O(109) or larger, and consequently thin turbulent boundary layers surround the
bodies. The thickness of the boundary layer around the forebody of a slender body
can be estimated qualitatively as that of a flat plate (cf. Saltzman & Fisher 1970),
because the flow is dominant in the longitudinal direction, along which the curvature
of the body surface and pressure gradient are small. The maximum thickness δm

of the boundary layer is thus estimated as δm = 0.37Re−0.2L � 0.006L, for Re �109

(cf. Sellier 1997, Ch. 21). The interaction of two slender bodies can be modelled
approximately using potential flow theory coupled with boundary layer theory when
the minimum clearance Cmin between the two bodies is larger than δm, say four times,
i.e. Cmin � 0.024L. Under this condition, the maximum displacement thickness δd of
the boundary layer, estimated as δd = 0.036Re−0.2L � 0.0006L for Re �109, is two
orders of magnitude smaller than the clearance and the transverse scale of the bodies.
The mass flux between the two bodies is not affected significantly by the viscous
effects within the boundary layer, and consequently the boundary condition for the
irrotational flow can be approximately satisfied on the body surfaces. In addition,
the condition on the minimum clearance may be violated locally without destroying
the validity of the potential flow solution as a whole (Van Dyke 1975; Wang 2005).

This analysis is based on potential flow theory, because the major forces that affect
the motion of a marine vessel near a bank, seabed or another vessel are generated
by the irrotational part of the flow (cf. Yeung & Hwang, 1977; Yeung & Tan 1980;
Korsmeyer et al. 1993). However, a trailing vortex may originate from the sharp edge
at the end of the body, which will be associated with the lift force perpendicular
to the vortex sheet and can be approximated using lifting surface theory (Newman
1975). An extension of slender body theory to account for the interaction of the
afterbody with vortex sheets shed upstream from appendages has been carried out by
Newman & Wu (1973). In principle, these works can be applied to the present work
for two slender bodies moving in very close proximity. This analysis is invalid when
significant boundary layer separation occurs.

2.2. Inner expansion

To perform the matched asymptotic expansions, we divide the fluid domain into two
regions, the inner region containing the two bodies where x is of O(1), y, z at O(ε),
and the outer region far away from the two bodies where x, y and z are of O(1).
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Introduce the inner variables

x = x, Y =
y

ε
, Z =

z + α∗
1x1

ε
. (8)

The boundary value problem (7) can be approximated as follows:

∂2ϕ

∂Y 2
+

∂2ϕ

∂Z2
+ O

(
ε2 ∂2ϕ

∂x2

)
= 0, (9a)

∂ϕ

∂R
= ε2

(
U1

dA1 (x1)

dx1

− α1U1 sin θ

)
+ O

(
ε4, ε2 ∂ϕ

∂x
, ε2 ∂ϕ

∂Z

)
onR = A1(x1) + O(ε2) for |x1 + O(ε2)| � L1, (9b)

∂ϕ

∂R2

= ε2

(
U2

dA2 (x2)

dx2

− α2U2 sin θ2

)
+ O

(
ε4, ε2 ∂ϕ

∂x
, ε2 ∂ϕ

∂Z

)
onR2 = A2(x2) + O(ε2) for |x2 + O(ε2)| � L2, (9c)

where

H (x, t) = H0 − (α1x1 − α2x2), (10a)

R =
√

Y 2 + Z2, tan θ =
Z

Y
, (10b)

R2 =

√
Y 2 + (Z + H )2, tan θ2 =

Z + H

Y
. (10c)

The first-order inner expansion ϕi is

ϕi = µ̂(ε)(φ(x, Y, Z, t) + S(x, t)) + o(µ̂). (11)

Substituting (11) into (9a–c), one obtains that φ satisfies

µ̂

(
∂2φ

∂Y 2
+

∂2φ

∂Z2

)
+ o(µ̂) = 0, (12a)

µ̂
∂φ

∂R
= ε2

(
dA1(x1)

dx1

U1 − α1U1 sin θ

)
+ o(ε2, µ̂)

onR = A1(x1) + O(ε2) for |x1 + O(ε2)| � L1, (12b)

µ̂
∂φ

∂R2

= ε2

(
dA2(x2)

dx1

U2 − α2U2 sin θ2

)
+ o(ε2, µ̂)

on R2 = A2(x2) + O(ε2) for |x2 + O(ε2)| � L2, (12c)

Therefore we must choose

µ̂ = ε2, (13)

and the boundary value problem (12) becomes

∂2φ

∂Y 2
+

∂2φ

∂Z2
= 0, (14a)

−∂φ

∂n
=

dA1(x1)

dx1

U1 − α1U1 sin θ on C1: R = A1(x1), (14b)

−∂φ

∂n
=

dA2(x2)

dx2

U2 − α2U2 sin θ2 on C2: R2 = A2(x2), (14c)

where C1 and C2 are the peripheries of the cross-sections of the two bodies.
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Satisfying the two-dimensional Laplace equation (14a), φ can be expressed as
follows using the Green formula:

φ(x, Y, Z, t) =

∮
C1+C2

(
G(Y, Z, Y0, Z0)

∂φ(x, Y0, Z0, t)

∂n

− ∂G(Y, Z, Y0, Z0)

∂n
φ(x, Y0, Z0, t)

)
dl(Y0, Z0), (15)

where

G(Y, Z, Y0, Z0) =
1

2π
log

√
(Y − Y0)2 + (Z − Z0)2. (16)

As R =
√

Y 2 + Z2 → ∞, G = (1/2π) log R + O(R−1) and Gn = O(R−1) on C1 and
C2. Equation (15) thus becomes

φ(x, Y, Z, t) =
log R

2π

∮
C1+C2

∂φ(x, Y0, Z0, t)

∂n
dl(Y0, Z0) + O(R−1)

= − log R

2π

( ∫ 2π

0

(
U1

dA1(x1)

dx1

− α1U1 sin θ

)
A1(x1) dθ

(17)

+

∫ 2π

0

(
U2

dA2(x2)

dx2

− α2U2 sin θ2

)
A2(x2) dθ2

)
+ O(R−1)

= −
(

U1A1(x1)
dA1(x1)

dx1

+ U2A2(x2)
dA2(x2)

dx2

)
log R + O(R−1),

where (14b, c) are used.
To carry out the matching between the inner region and outer region, following

Kevorkian & Cole (1985), we introduce the intermediate variable rσ

rσ =
r

σ (ε)
=

εR

σ (ε)
, (18)

with ε � σ � 1. In the intermediate region, rσ = O(1), R = O(σ/ε), and thus

φ(x, Y, Z, t) = −
(

U1A1(x1)
dA1(x1)

dx1

+ U2A2(x2)
dA2(x2)

dx2

)
log

(
σrσ

ε

)
+O

(
ε

σ

)
. (19)

Substituting (13), (19) into (11), one obtains the outer limit of the inner expansion

(ϕi)o = ε2

(
−

(
U1A1(x1)

dA1(x1)

dx1

+ U2A2(x2)
dA2(x2)

dx2

)
log

(
σrσ

ε

)
+ S(x, t)

)
+O

(
ε3

σ

)
.

(20)

2.3. Outer expansion

The two slender bodies shrink to the line segments, |x1| � L1 and |x2| � L1, y = z = 0,
as seen by an outer observer. The outer expansion ϕo can thus be expressed in terms
of the line sources along the two segments with unknown strengths S1(ξ ) and S2(ξ ):

ϕo(x, y, z, t) = µ̃(ε)

∫ L1

−L1

S1(ξ ) dξ√
(x1 − ξ )2 + y2 + z2

+µ̃(ε)

∫ L2

−L2

S2(ξ ) dξ√
(x2 − ξ )2 + y2 + z2

+ o(µ̃).

(21)

The limit form of (21) as r =
√

y2 + z2 → 0 is (cf. Kevorkian & Cole 1985, Ch. 4).

ϕo = µ̃(ε)G(x, t) − 2µ̃(ε)(S1(x1) + S2(x2)) log r + o(µ̃r2), (22)
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where

G(x, t) = S1(−L1) log(2L1 + 2x1) + S1(L1) log(2L1 − 2x1)

+

∫ L1

−L1

dS1(ξ )

dξ
sgn(x1 − ξ ) log|2ξ − 2x1| dξ

+ S2(−L2) log(2L2 + 2x2) + S2(L2) log(2L2 − 2x2)

+

∫ L2

− L2

dS2(ξ )

dξ
sgn(x2 − ξ ) log|2ξ − 2x2| dξ. (23)

In the intermediate region, r = σ (ε)rσ , rσ =O(1), the inner limit of the outer ex-
pansion then becomes

(ϕo)i = µ̃(ε)G(x, t) − 2µ̃(ε)(S1(x1) + S2(x2)) log (σrσ ) + O(µ̃σ 2). (24)

We then use Van Dyke’s matching principle (Van Dyke 1975), i.e. equating the
inner limit of the outer expansion (20) to the outer limit of the inner expansion (24)
in the intermediate region. The matching yields

µ̃(ε) = ε2, (25a)

2(S1(x1) + S2(x2)) = U1A1(x1)
dA1(x1)

dx1

+ U2A2(x2)
dA2(x2)

dx2

, (25b)

S(x, t) = G(x, t) − 2 log ε(S1(x1) + S2(x2)). (25c)

Using (25b) and noticing that A1(x1) and A2(x2) may be arbitrary, one further
obtains

S1(x1) = 1
2
U1A1 (x1)

dA1 (x1)

dx1

, S2(x2) = 1
2
U2A2 (x2)

dA2 (x2)

dx2

. (26a, b)

Equation (26) shows that 4πS1(x1) and 4πS2(x2) are the variation rates of the cross-
section areas of the two slender bodies, observed in the ground-fixed coordinate
system.

On examining (23), we can assume that near xi = ±Li the source strengths Si(xi)
tend to zero faster than [log(Li + xi)]

−1 or [log(Li − xi)]
−1. Therefore, we have the

classical restrictions on the nose and tail shapes defined by

lim
xi→−Li

Ai (xi)
dAi (xi)

dxi

log (Li + xi) = 0, (27a)

lim
xi→Li

Ai (xi)
dAi (xi)

dxi

log (Li − xi) = 0. (27b)

To summarize, the outer solution is given by (21), (25a) and (26). One can see that
the disturbance flow far away from the two slender bodies is axisymmetric, and can
be obtained by superposing the disturbances of the two bodies. The disturbance of
each body can be represented by a line source distribution along its long axis, with
the source strength being the variation rate of its cross-sectional area.

The inner expansion takes the form

ϕi = ε2G(x, t) − 2ε2 log ε(S1(x1) + S2(x2)) + ε2φ(x, Y, Z, t) + o(ε2), (28)

where G(x, t) given in (23), S1(x1) and S2(x2) are given in (26), and φ is governed by
(14a–c). Examining (14), one can draw the following conclusion. The inner flow
problem is reduced to the plane flow problems of two circular cylinders with
radii A1(x1) and A2(x2), expanding (contracting) at speeds A1xU1 and A2xU2, and
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Figure 2. The conformal mapping of (a) the domain outside two circles C1 and C2 in the
Q = Y+iZ plane to (b) the domain between two concentric circles D1 and D2 in the ς = ρeiΘ

plane.

translating laterally at velocities −α1U1 and −α2U2, respectively. The influence of the
deformations, corresponding to the variations of the cross-sectional areas, propagates
to the outer region, whereas the influences of angles of yaw are limited to the inner
region. The two problems cannot be decoupled like that for a slender body in an
unbounded fluid. Wang (2004) obtained the unsteady velocity potential due to two
moving circular cylinders in an inviscid fluid. For completeness, the solution of (14)
is briefly described in next subsection.

2.4. Analytical cross-flow solution

To solve problem (14), a linear fractional conformal mapping is introduced between
the cross-flow plane Q =Y + iZ and the mapped plane ς = ρeiΘ

Q = iC
ς + C

ς − C
− iC cothβ, (29)

where

C =

√
(A2

1 + A2
2 − H 2)2 − 4A2

1A
2
2

2H
, β = arcsinh(C/A1). (30a)

It maps the domain outside the two circles C1, |Q| =A1, and C2, |Q + H i| =A2, in
the cross-flow plane Q, to the domain between the two concentric circles D1, |ζ | = ρ1,
and D2, |ζ | = ρ2, in the mapped plane ς , as sketched in figure 2. Here ρ1 and ρ2 are
given by

ρ1 = Ceβ, ρ2 = Ce−γ , γ = arcsinh(C/A2). (30b)

To simplify problem (14), we introduce

φ = 2S2(x2) ln ρ − 2(S1(x1) + S2(x2)) log|Q − C| + Φ. (31)
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The boundary problem for Φ then becomes

∂2Φ

∂η2
+

∂2Φ

∂ς2
= 0, (32a)

∂Φ

∂ρ
= 2

S1 − S2

Ceβ

1 − eβ cos Θ

e2β − 2eβ cos Θ + 1
+

4α1U1e
β(1 − coshβ cosΘ)

(e2β − 2eβ cos Θ + 1)2
onD1, (32b)

∂Φ

∂ρ
= 2

S1 − S2

Ce−γ

1 − eγ cosΘ

e2γ − 2eγ cos Θ + 1
+

4α2U2e
3γ (1 − cosh γ cosΘ)

(e2γ − 2eγ cos Θ + 1)2
onD2. (32c)

The left-hand sides of (32b, c) can be further expanded as Fourier series in Θ

∂Φ

∂ρ
= −2

S1 − S2

C

∞∑
n=1

cos(nΘ)

e(n+1)β
− α1U1

∞∑
n=1

n
cos(nΘ)

e(n+1)β
onD1, (33a)

∂Φ

∂ρ
= −2

S1 − S2

C

∞∑
n=1

cos (nΘ)

e(n−1)γ
− α2U2

∞∑
n=1

n
cos(nΘ)

e(n−1)γ
onD2. (33b)

We next assume that the solution of (32) takes the form: Φ =
∑∞

n= 1(Anρ
n+

Bnρ
−n) cos(nΘ). Determining its coefficients with (33), and then substituting Φ into

(31), we obtain

φ = 2S2 log ρ − (S1 + S2) log(ρ2 − 2ρC cos Θ + C2)

−(S1 − S2)

∞∑
n=1

1

n

cos(nΘ)

sinh(nβ + nγ )

(
sinh(nβ)

(
ρ

ρ1

)n

− sinh(nγ )

(
ρ2

ρ

)n)

−2C

∞∑
n=1

cos(nΘ)

1 − e−2n(β+γ )

(
e−nβ(α1U1 − α2U2 e−2nγ )

(
ρ

ρ1

)n

−e−nγ (α2U2 − α1U1 e−2nβ)

(
ρ2

ρ

)n)
. (34)

The two series in (34) are absolutely convergent in the whole cross-flow domain,
corresponding to ρ2 � ρ � ρ1 and 0 � Θ < 2π.

For a transverse plane x, where only one of the two bodies exists, (34) is simplified
as follows:

φ = −2
A1(x1)S1(x1)

R
− α1U1A

2
1(x1)

R
sin θ (only body 1), (35a)

φ = −2
A2 (x2) S2(x2)

R2

− α2U2A
2
2 (x2)

R2

sin θ2 (only body 2). (35b)

3. Formulae for lateral force and yaw moment
In this section, the formulae for the lateral forces and yaw moments acting on two

slender bodies of revolution moving in close proximity are derived. We only consider
the force and moment on one of the two bodies, because the force and moment on
the other can be simply obtained by rotating the parameters between them.

Having obtained the inner expansion of the potential, the hydrodynamic pressure
near the two slender bodies can be obtained using Bernoulli’s equation. In the
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ground-fixed system (x, y, z; t), the pressure can be expressed as

p

ρf

= −∂ϕi

∂t
− 1

2

((
∂ϕi

∂x

)2

+

(
∂ϕi

∂y

)2

+

(
∂ϕi

∂z

)2
)

. (36)

To calculate the hydrodynamic load, we need to express the pressure in the system
(x1, Y , Z; t1) fixed to body 1, where x1 is defined in (1), Y and Z are defined in (8),
and t1 = t . Using the relation between the two systems, we have

∂

∂t
=

∂

∂t1
+ U1

∂

∂x1

+ α1U1

∂

∂Z
,

∂

∂x
=

∂

∂x1

+ α1

∂

∂Z
,

∂

∂y
=

1

ε

∂

∂Y
,

∂

∂z
=

1

ε

∂

∂Z
.

⎫⎪⎪⎬
⎪⎪⎭ (37)

Substitution of (37) into (36) yields

p

ρf

= −∂ϕi

∂t1
− U1

∂ϕi

∂x1

− α1U1

∂ϕi

∂Z
− 1

2

(
∂ϕi

∂x1

+ α1

∂ϕi

∂Z

)2

− 1

2ε2

((
∂ϕi

∂Y

)2

+

(
∂ϕi

∂Z

)2
)

= −∂ϕi

∂t1
− U1

∂ϕi

∂x1

− α1U1

∂ϕi

∂Z
− 1

2ε2

((
∂ϕi

∂Y

)2

+

(
∂ϕi

∂Z

)2
)

+ o(ε2)

= −∂ϕi

∂t1
− U1

∂ϕi

∂x1

− α1U1 sin θ
∂ϕi

∂R
− 1

R
α1U1 cos θ

∂ϕi

∂θ

− 1

2ε2

((
∂ϕi

∂Y

)2

+

(
∂ϕi

∂Z

)2
)

+ o(ε2). (38)

Substituting the inner expansion (28) into (38), we have

p

ρf

= ε2 log εP0(x1, t) + ε2P1(x1, t) + ε2 P (x1, Y, Z; t) + o(ε2), (39a)

P = −∂φ

∂t1
− U1

∂φ

∂x1

− α1U1 sin θ
∂φ

∂R
− 1

R
α1U1 cos θ

∂φ

∂θ
− 1

2ε2

((
∂φ

∂Y

)2

+

(
∂φ

∂Z

)2)
.

(39b)

P0(x1, t) and P1(x1, t) in (39a) depending only on (x1, t) can be obtained straight-
forwardly from the terms G(x, t), S1(x1) and S2(x2) of (28), which have not been given
here, since they do not contribute to the lateral force and yaw moment.

The lateral force f1 on body 1 is given by the integration of −p sin θ around the
body surface. The yaw moment m1, to the axis through the body centre and parallel
to the y-axis, is given by the integration of px 1 sin θ around the body surface. Noticing
that the terms P0(x1, t) and P1(x1, t) are cancelled in the integrations, we have

f1

ε3ρf

= −
∫ L1

−L1

dx1

∮
C1

P sin θdl + o(1),
m1

ε3ρf

=

∫ L1

−L1

x1 dx1

∮
C1

P sin θdl + o(1).

(40a, b)

For a transverse plane where only body 1 exists, the inner integral in (40a) can be
integrated using (35a) and (39b),

−
∮

C1

P sin θdl = πA1

(
∂

∂t1
+ U1

∂

∂x1

)
α1U1A1 = 2πα1U1S1(x1). (41a)
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For a transverse plane where the two bodies coexist, using (34), we have

−
∮

C1

P sin θdl = 2πα1U1S1 +

∮
C1

(
∂

∂t1
+ U1

∂

∂x1

)
φ sin θ dl

− α1U1

A1

∮
C1

cos(2θ )φ dl +
1

2

∮
C1

((
∂φ

∂R

)2

+
1

R2

(
∂φ

∂θ

)2
)

sin θ dl.

(41b)

Introduce J1(x, t), J2(x, t) and J3(x, t) as follows:

J1(x, t) =

∮
C1

φ sin θdl, (42a)

J2(x, t) =

∮
C1

φ cos (2θ ) dl, (42b)

J3(x, t) =
1

2

∮
C1

((
∂φ

∂R

)2

+
1

R2

(
∂φ

∂θ

)2
)

sin θdl. (42c)

Equation (40a) can be expressed as

f1

ε3ρf

= U1 (J1 (b, t) − J1 (a, t)) +

∫ b

a

(
−U1

J1

A1

dA1

dx1

+
∂J1

∂t1
− α1U1

A1

J2 + J3

)
dx1, (43)

where [a, b] is the interval of x1 in which the cross-sections of both bodies coexist.
The intervals [a, b] are given as follows. For |U1| > |U2|,

a =

⎧⎪⎪⎨
⎪⎪⎩

−L1, for t �
2L2

|U1 − U2| ,

−L1 − 2L2 + (U1 − U2)t for t >
2L2

|U1 − U2| ,
(44a)

b =

⎧⎪⎪⎨
⎪⎪⎩

−L1 + (U1 − U2)t for t �
2L1

|U1 − U2| ,

L1 for t >
2L1

|U1 − U2| .
(44b)

For |U1| < |U2|,

a =

⎧⎪⎪⎨
⎪⎪⎩

L1 + (U1 − U2)t for t �
2L1

|U1 − U2| ,

−L1 for t >
2L1

|U1 − U2| ,
(45a)

b =

⎧⎪⎪⎨
⎪⎪⎩

L1, for t �
2L2

|U1 − U2| ,

L1 + 2L2 + (U1 − U2)t for t >
2L2

|U1 − U2| .
(45b)

Notice that intervals [a, b] given in (44)–(45), where the cross-sections of both bodies
coexist, cover all three manoeuvre cases: meeting and passing and a body passing a
stationary body.
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Similarly to deriving (43), (40b) can be expressed as

m1

ε3ρf

=
α1U1V1

2
− U1(bJ1(b, t) − aJ1(a, t))

+

∫ b

a

(
−U1J1 − x1

(
−U1

J1

A1

dA1

dx1

+
∂J1

∂t1
− α1U1

A1

J2 + J3

))
dx1, (46)

where V1 is the volume of body 1.
J1(x, t), J2(x, t) and J3(x, t) of (42) can be integrated analytically with the following

results (see the Appendix for details)

J1(x, t) = 4πC

∞∑
n=1

ane
−2nβ, (47a)

J2(x, t) = 4πC

∞∑
n=1

(coshβ − n sinhβ)ane
−2nβ, (47b)

J3(x, t) =
2π

C

[
− 2S2

1 − 2S1b1e
−β coshβ

+ 2

∞∑
n=1

(
coshβe−β(bnbn+1 + anan+1) −

(
b2

n + a2
n

))
e−2nβ

]
. (47c)

where

an = S1 + S2 − (S1 − S2)
1 − 2e− 2nβ +e− 2n(β + γ )

1 − e−2n(β + γ )

− Cn
α1U1 − 2α2U2e

−2nγ + α1U1e
−2n(β+γ )

1 − e−2n(β+γ )
, (48a)

bn = −(2S1 + Cnα1U1). (48b)

∂J1/∂t1 needed in (43) and (46) can be obtained from (47a) as follows:

∂J1(x, t)

∂t1
= 4π

∞∑
n=1

n

(
an

∂C

∂t1
+ C

∂an

∂t1
− 2nCan

∂β

∂t1

)
e−2nβ. (49)

∂C/∂t1 and ∂β/∂t1 needed in (49) and ∂γ /∂t1 can be obtained from (30):

∂C

∂t1
= − C

H

∂H

∂t1

+

(
A2

1 + A2
2 − H 2

)(
A1α1U1 + A2α2U2 − H

∂H

∂t1

)
− 2A1A2 (α1U1A2 − α2U2A1)

2H 2C
,

(50a)

∂β

∂t1
=

1

A2
1 coshβ

(
A1

∂C

∂t1
− C

∂A1

∂t1

)
,

∂γ

∂t1
=

1

A2
2 cosh γ

(
A2

∂C

∂t1
− C

∂A2

∂t1

)
. (50b, c)

∂an/∂t1 needed in (49) can then be obtained straightforwardly from (48a).
The four series in (47) and (49) are absolutely convergent.
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4. Numerical analyses
The interaction of two translating slender bodies of revolution modelled in § 3

is calculated using MATLAB. The four series in (47), (49) converge rapidly, since
their terms decay exponentially. The four series are summed to a very high accuracy,
with the series truncated when the terms are O(10−8), since the CPU time needed
is minimal. The integrations of the lateral force (43) and pitching moment (46)
are performed using recursive adaptive Simpson quadrature. As an illustration, the
calculations are performed for the following two slender bodies of revolution:

A1 (x1) = Am
1

L2
1 − x2

1

L2
1

, |x1| � L1, (51a)

A2 (x2) = Am
2

L2
2 − x2

2

L2
2

, |x2| � L2. (51b)

The results are given in terms of the dimensionless lateral forces F1 and F2, yaw
moments M1 and M2, and time T :

Fi =
fi

ρf V 2
ref (2L1)

2 ε3
, Mi =

mi

ρf V 2
ref (2L1)

3 ε3
, i = 1, 2, (52a, b)

T =
2(L1 + L2)t

|U1 − U2| , (52c)

where f2 and m2 are the force and moment on body 2. The reference velocity Vref is
chosen as U1 if U1 �= 0 and as U2 if U1 = 0. To compare the forces and moments on
the two bodies, the same scaling parameters are used for both bodies.

4.1. Evaluation

To validate this slender body analysis, its results are compared with those of VSAERO
(AMI), well-validated commercial software based on potential flow theory and a three-
dimensional boundary element method (BEM) (Maskew 1987; Nathman & Matarrese
2004). The validation is carried out for two equal slender bodies of revolution defined
in normalized form as

a(x) = 0.05(1 − 4x2) for |x| � 0.5, (53)

where the ratio of the maximum diameter to the length of the body is set at 0.1.
VSAERO is only appliable to steady problems. A steady case is thus considered,

where the two bodies at the same transverse position move at zero incidence along
their long axes at the same velocity U . This problem is equivalent to one of the two
bodies moving near a wall at the symmetry plane between the two bodies.

Figure 3(a) shows a comparison between the analytical and numerical results for
the normalized lateral force F acting on one of the two bodies versus the lateral
distance H0 between their body centres. Figure 3(b) shows the relative difference
between the two results. The forces from the two models agree well for H0 � 0.15,
with the relative difference being less than 5 %, when the maximum transverse
dimension across the two bodies B is less than or equal to one quarter of the body
length. As H0 increases, the difference increases rapidly, reaching 20 % for H0 = 0.20,
when B is 30 % of the body length. This is as expected. But the difference increases on
decreasing H0 from 0.13 to 0.12. This is possibly because the resolution of the mesh
used in the BEM computation is not fine enough for this very close interaction. The
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Figure 3. (a) A comparison of normalized lateral force acting on one of the bodies versus
lateral distance among the present slender body theory, the BEM model of VSAERO (AMI)
and the slender body theory of Tuck & Newman (1974). (b) The relative difference Dr between
the results of the present theory and the BEM model.

slender body theory thus provides reasonable results when the minimum clearance
between the two bodies is less than 0.1L.

Figure 3(a) also shows the result of Tuck & Newman (1974), which assumes that
the two slender bodies are in each other’s far field. The attraction found by Tuck &
Newman is much smaller than the BEM result when H0 is within 30 % of the body
length, but approaches the latter when H0 is about half the body length.

4.2. Meeting manoeuvre

We now consider the two slender bodies of revolution defined in (51) with the same
dimensions in a meeting manoeuvre, where they translate in opposite directions.
Figures 4(a) and 4(b) show the lateral forces F1 on body 1 and −F2 on body 2
versus time, for lateral distance between their centres H0 = 3.0 and U2/U1 = −1.0,
−1.5 and −2.0. The lateral forces on both bodies have three phases over the meeting
period: repulsion, attraction and repulsion. Each phase is about one third of the
meeting period under the conditions considered. The peak attraction on each body
is significantly larger than the peak repulsion, and the two bodies will tend to be
attracted more than repelled, thus giving rise to the danger of a collision. When the
speed of body 2 increases, the force on both bodies increases and the force on the
slower body increases much faster.

Figures 4(c) and 4(d) show the yaw moments M1 on body 1 and M2 on body 2
versus time for the same case. The moments on both bodies are in four phases: in the
bow-out and then bow-in directions during each of the first and second halves of the
meeting period. The bow-out and bow-in moments during the first and last phases are
consistent with repulsions between the two close ends of the two bodies. In between,
the attractions acting on the large middle parts of the two bodies are dominant. The
moments are the bow-in (bow-out) direction before (after) the meeting of the centres
of the two bodies, when the centre of attraction on each body is at its fore (aft) half.
The amplitude of variation of the moment on the slower body is much larger than
that on the faster one.

4.3. Passing manoeuvre

Secondly, we consider the two slender bodies with the same dimensions in a passing
manoeuvre, where they translate in the same direction. Figures 5(a) and 5(b) show
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Figure 4. (a) Lateral force F1 on body 1 versus time, (b) lateral force −F2 on body 2, (c) yaw
moment M1 on body 1, (d) yaw moment M2 on body 2, for two slender bodies of revolution
in a meeting manoeuvre for H0 = 3.0 and U2/U1 = −1.0, −1.5 and −2.0.

the lateral forces F1 and −F2 on the two bodies versus time, for H0 = 3.0 and
U2/U1 = 1.001, 1.5 and 2.0. For U2/U1 = 1.001, the relative velocity between the two
bodies is very small and the unsteady effects are negligible, and hence the results are
actually for two bodies in tandem at various relative positions translating at the same
speed. As in the meeting manoeuvre (figures 4a and 4b), the two bodies experience
repulsion, attraction and repulsion over the passing period, and the attraction on each
body is more dominent than the repulsion. When the speed of body 2 increases, the
periods of the three phases for the slower body do not change, whereas the period of
attraction for the faster body increases significantly. In fact the faster body experiences
attraction for the whole passing period for U2/U1 = 2.0. Another interesting feature is
that the force on the slower body increases with U2, but the force on the faster body
decreases with U2. As a result, the peak attraction on the slower body is much larger
than that on the faster body.

In both meeting and passing manoeuvres, both bodies experience repulsion,
attraction and repulsion over the meeting/passing period. This is a well-known
feature (cf. Tuck & Newman 1974; Dand 1981; Kikuchi et al. 1996; and Vantorre,
Laforce & Verzhbitskaya 2001), which is interpreted as follows. When two spheres or
two circular cylinders approach (or depart from) each other, they are repelled by the
hydrodynamic force (Milne-Thomson 1968; Wang 2004). This is because there is a
stagnation point on the axis of symmetry between the two bodies, and a high-pressure
zone is generated there. For non-axisymmetric cases, one can expect a lower speed
and higher pressure zone between two bodies approaching (or departing from) each
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Figure 5. (a) Lateral force F1 on body 1 versus time, (b) lateral force −F2 on body 2, (c) yaw
moment M1 on body 1, (d) yaw moment −M2 on body 2, for two slender bodies of revolution
in a passing manoeuvre for H0 = 3.0 and U2/U1 = 1.001, 1.5 and 2.0.

other, and the two bodies experience repulsion forces. In contrast, two bodies passing
each other are attracted by the hydrodynamic force, because the flow between them
is restricted and moves faster.

Note that figures 4(a) and 5(a) show that the force, F1, on the slower body can be
substantially larger than that on the faster body. The reason is readily seen when the
two-dimensional disturbance velocity field is considered. The more rapidly moving
body causes a greater disturbance. As for two slender bodies in a meeting/passing
manoeuvre, their two close ends approach (depart from) each other locally during
the first (last) part of the passing/meeting period, hence they repel each other. If
the two bodies move at different speeds, the stagnation point in the two-dimensional
disturbance flow will be closer to the slower one, hence the slower body will experience
a higher repelling force. In between the first and last parts of the period, the two
bodies pass each other and hence are attracted. The streamlines are diverged more
by the faster body and become closer to each other near the slower body. The flow
thus moves faster near the slower body and the pressure is lower than near the faster
body. Consequently the slower body experiences higher attraction.

Figures 5(c) and 5(d) show the yaw moments M1 and −M2 on the two bodies
versus time for the same case. An interesting feature is that the moments on both
bodies are small during the first and last parts of the passing period, and are thus
characterized approximately in only two phases. This feature was observed in the tests
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Figure 6. (a) Lateral force F1 on body 1 versus time, (b) lateral force −F2 on body 2, (c) yaw
moment M1 on body 1, (d) yaw moment −M2 on body 2, for two slender bodies of revolution
in a passing manoeuvre for U2 = 0.9U1, H0 = 3.0, and Am

2 /Am
1 = L2/L1 = 1.0, 1.5 and 2.0.

by Vantorre et al. (2001), and is interpreted as follows. The repulsion of on two bodies
approaching/departing from each other increases with their relative velocity, whereas
the attraction between two bodies passing each other increases with the velocity of
the flow between the two bodies. Therefore, the repulsion during the first and last
parts of a passing manoeuvre is not as significant as that in a meeting manoeuvre
(figures 4a, 4b and 5a, 5b), and hence the moments on the two bodies are small at
the corresponding times.

The moment on the faster body mainly displays bow-in and bow-out behaviour
during the first and second halves of the passing period, and whereas the moment on
the slower body displays bow-out and bow-in behaviour during the first and second
halves. This ‘out-phase’ feature is because the passing of the faster body starts from
the fore part towards the aft part, and vice versa for the slower body. The peak of
the moment on the slower body is much larger than that on the faster one.

Comparing figures 4 and 5, one can see that, at the same speed, the forces on the
two bodies in a meeting manoeuvre are much more prominent than those in a passing
manoeuvre, whereas the magnitudes of moments are comparable for the two cases.

4.4. Influence of size, proximity and yaw angle of bodies

Thirdly, we consider the case where the two bodies are of different sizes. Figures 6(a)
and 6(b) show the lateral forces F1 and −F2 on the two bodies versus time, when the
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Figure 7. (a) Lateral force F1 and (b) yaw moment M1 on body 1 versus time for two slender
bodies of revolution in a passing manoeuvre for U2 = 0.9U1 and various lateral distances
H0 = 2.0, 3.0 and 4.0.

two bodies are in a passing manoeuvre for U2 = 0.9U1, H0 = 3.0, and various values
of Am

2 /Am
1 = L2/L1 = 1.0, 1.5 and 2.0. Both bodies experience repulsion, attraction

and repulsion over the passing period. When the size of body 2 increases, the peak
attraction on each body increases faster than the peak repulsion, and the period of
attraction increases too.

Figures 6(c) and 6(d) show the yaw moments M1 and −M2 on the two bodies versus
time for this case, which appear mainly in two phases. The faster body experiences the
bow-in and bow-out moment during the first and second halves of the passing period,
and vice versa for the slower body. As the size of body 2 increases, the amplitude of
the moment on the larger body increases faster than that on the smaller body, being
about double when Am

2 /Am
1 = L2/L1 = 2.0.

We now analyse the dynamic effects of the proximity of the two bodies. Figure 7(a)
shows the lateral force F1 on body 1 versus time for two bodies with the same
dimensions in a passing manoeuvre for U2 = 0.9U1 and various lateral separation
distances H0 = 2.0, 3.0 and 4.0. The bodies experience repulsion, attraction and
repulsion over the passing period. The peak attraction increases much faster with
the proximity of the two bodies than the peak repulsion. The period of attraction
increases with the proximity too. Figure 7(b) shows the corresponding moment M1 on
body 1 versus time. The moment appears in a bow-in and bow-out variation during
the first and second halves of the passing period, and its amplitude increases rapidly
with the proximity.

We next investigate the dynamic effects of the angles of yaw of the two bodies.
Figure 8 shows the lateral force F1 on body 1 versus time for U2 = 0.9U1, H0 = 3.0, and
α1 = −1.0, 0, 1.0 and α2 = 0 (figure 8a), and α1 = 0 and α2 = −1.0, 0, 1.0 (figure 8b).
One can see that the force on one body decreases with its yaw angle and that of the
other body for the first half of the passing period, but increases with the two angles
for the second half. This is because the clearance between the two bodies increases
with the angles of yaw for the first half of the passing period, as shown in figure 9,
and vice versa for the second half.

4.5. One body passing a stationary body

We further consider a special case where one of the two bodies translates and
the other is stationary. Figures 10(a) and 10(b) show the lateral forces F1 and
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Figure 8. Lateral force F1 on body 1 versus time for the two slender bodies of revolution in
a passing manoeuvre for U2 = 0.9U1, H0 = 3.0, and (a) α1 = −1.0, 0, 1.0 and α2 = 0, (b) α1 = 0
and α2 = −1.0, 0, 1.0.
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Figure 9. The clearance between two slender bodies is shown to increase with the angles of
yaw during the first half of the passing period.

−F2 on the two bodies versus time, when body 2 only translates, for H0 = 3.0 and
Am

2 /Am
1 =L2/L1 = 0.75, 1.00 and 1.25. Both bodies experience repulsion, attraction

and repulsion over the passing period, as in the passing and meeting manoeuvres
(figures 4a, 5a). The force on the stationary body is significantly larger than that on
the moving body. When the two bodies are of the same size, the peak attraction on
the stationary body is about 7.2 times that on the moving one. This is important for
ships berthed or moored to buoys, since they will experience much greater force than
the ship passing them. The moving body experiences a small repulsion at the first and
last phases of the passing period (figure 10b), because the stagnation point and the
resulting high-pressure zone are nearer the stationary body. When the size of body 2
increases, the forces on both bodies increase.

Figures 10(c) and 10(d) show the yaw moments M1 and −M2 on the two bodies
versus time for the same case. The stationary body 1 experiences the close ends-out
yaw moment, in the first and last phases of the passing period (figure 10c). In between,
it experiences the first meeting ends-in (out) moment at much larger amplitudes before
(after) the meeting of the body centres. The moment on the moving body displays
the first meeting ends-in and ends-out behaviour in the first and second halves of
the passing period (figure 10d). These features were noticed in the tests of SSPA
(1985) and the calculations of Korsmeyer et al. (1993). Comparing the results of
figures 10(c), 10(d), one can see that the amplitude of the moment on the stationary
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Figure 10. (a) Lateral force F1 on body 1 versus time, (b) lateral force −F2 on body 2,
(c) yaw moment M1 on body 1, (d) yaw moment −M2 on body 2, as only body 2 translates
and body 1 is stationary for H0 = 3.0 and Am

2 /Am
1 = L2/L1 = 0.75, 1.00 and 1.25.

body is significantly larger (23 times) than that on the moving body of the same size.
When the size of body 2 increases, the amplitudes of the moments on both bodies
increase.

4.6. Maximum magnitudes of forces and moments

Finally, we analyse the maximum magnitudes of forces and moments acting on the
two bodies. Figure 11(a) shows the maximum attractions Fm1 and Fm2 versus |U2/U1|,
for the two equal slender bodies of revolution moving in close proximity for H0 = 3.0.
|U2/U1| is chosen in the range of [1, 2], i.e. body 1 being the slower body and body
2 the faster one. As expected Fm1 = Fm2 for |U2| = |U1|. In a meeting manoeuvre
(U1U2 < 0), the maximum attractions on both bodies increase with the ratio |U2/U1|,
the relative velocity between the two bodies, and the maximum attraction on the
slower body Fm1 increases much faster. In a passing manoeuvre (U1U2 > 0), Fm1 on
the slower body increases rapidly with the relative velocity, whereas Fm2 on the
faster body decreases slowly with the relative velocity. As the result, the maximum
attraction on the slower body is much larger than larger that on the faster body in
both manoeuvre cases, being 2.1 times for U2 = −2U1 and 11 times for U2 = 2U1. It
is well known that when two ships are moving in close proximity, the slower ship
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Figure 11. (a) The maximum magnitudes of the attractions Fm1 and Fm2, and (b) the yaw
moments Mm1 and Mm2, versus |U2/U1|, for the two equal slender bodies of revolution moving
in close proximity for H0 = 3.0.

experiences a much larger attraction than the faster ship does (see Vantorre et al.
2001).

Figure 11(b) shows the corresponding maximum magnitudes of the yaw moments
Mm1 and Mm2 versus |U2/U1|. In both the meeting manoeuvre and the passing
manoeuvre, the moment peak on the slower body Mm1 increases rapidly with the
relative velocity, whereas the moment peak on the faster body Mm2 varies slightly.
Consequently, in both cases, the slower body experiences a much larger moment peak
than the faster body, being 3.5 times for U2 = −2U1 and 4.8 times for U2 = 2U1.
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Figure 12. (a) The maximum magnitudes of the attractions Fm1 and Fm2, (b) the yaw moments
Mm1 and Mm2, versus H0, for the two equal slender bodies of revolution moving in close
proximity with |U2/U1| = 1.111.

Figures 11(a) and 11(b) also compare results of the two types of manoeuvre. One
can see that, at the same speeds, the maximum attractions on the two bodies in the
meeting manoeuvre are much more prominent than those in the passing manoeuvre,
whereas the maximum moments on both bodies in the meeting manoeuvre are only
slightly larger than those in the passing manoeuvre.

Figure 12 shows the maximum magnitudes of the attractions Fm1, Fm2 and the yaw
moments Mm1, Mm2 versus the lateral distance between the centres of the two bodies
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H0, for the two equal slender bodies of revolution moving in close proximity. The
results are shown for the meeting manoeuvre for U2/U1 = −1.111 and the passing
manoeuvre for U2/U1 = 1.111. In both cases the maximum attractions Fm1, Fm2 and
the maximum moments Mm1, Mm2 decrease rapidly with H0.

Figure 13 shows the maximum attraction Fm1 on body 1 versus L2/L1, when only
body 1 translates and body 2 is stationary for H0 = Am

2 + 2Am
1 and Am

2 /Am
1 = L2/L1.

In this case, body 2 is at zero incidence α2 = 0, while the angle of attack of body 1
is α1 = 0 (solid line) and 1.0 (dashed line). Fm1 increases with the size of body 2. Fm1

at α1 = 1.0 is slightly larger than that at α1 = 0. The attractions for a slender body of
revolution moving near a wall at the same clearances are also given in the figure. One
can see that, when body 2 is significantly larger than body 1, the maximum attraction
on body 1 approaches the attraction on the body moving near a wall.

5. Summary and conclusions
An analysis is performed for two slender bodies of revolution in an inviscid fluid

translating in very close proximity on parallel paths. We assume that the radii and
angles of yaw of the two bodies and the clearance between them are small quantities of
the same order, compared to their lengths. Using the method of matched asymptotic
expansions, the flow problem is reduced to the plane flow problem of the expanding
(contracting) and lateral translations of two parallel circular cylinders, which is then
solved using conformal mapping. In addition, the lateral forces and yaw moments
acting on the two bodies are obtained in terms of the integrals along the body
lengths.
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A comparison is performed among the present model, Tuck & Newman’s model
(1974), and VSAERO (AMI) – commercial software based on potential flow theory
and the boundary element method. The present model is for two slender bodies in
close proximity, where the clearance between the two bodies is small compared to
the body lengths. Tuck & Newman’s model is for two slender bodies far apart, where
the clearance is comparable to the body lengths, and consequently the two bodies are
in each other’s far field. Their interactions can be approximated using the far-field
asymptotic approximations of the slender body theory.

The test case is for two equal slender bodies with the ratio of diameter to length of
0.1 in symmetrical lateral motion. We compare the attraction between the two bodies
versus the lateral distance h0 between the centres of the two bodies. The attraction
of the present model agrees well with that of VSAERO (AMI), when the clearance
is small. The relative error is less than 5 % (20 %) when h0 is within 15 % (20 %)
of the body length, whereas the attraction of Tuck & Newman is much smaller than
the BEM result when h0 is within 30 % of the body length, but approaches the latter
when h0 is about a half of the body length.

Numerical analyses are performed for two slender bodies of revolution for the three
typical manoeuvres: (i) two bodies in a meeting manoeuvre (translating in opposite
directions), (ii) two bodies in a passing manoeuvre (translating in the same direction),
and (iii) a body passing a stationary body. The dynamic features found may be
summarized as follows, some of which are similar to the known features for two
moving slender bodies not in close proximity observed in previous studies.

(1) In all of the three manoeuvres, both bodies experience a sequence of repulsion,
attraction and repulsion through the meeting/passing period. The attraction acting
on each body is much more prominent than the repulsion, thus giving rise to the
danger of a collision of the two bodies.

(2) In a meeting manoeuvre, the yaw moments acting on both bodies are in four
phases: in the bow-out and bow-in directions successively during the first and second
halves of the meeting period. In a passing manoeuvre, the moments on both bodies
have only two phases. The faster body experiences the bow-in and bow-out moment
during the first and second halves of the passing period, and vice versa for the slower
body.

(3) The forces and moments in a meeting manoeuvre are more prominent than
those in a passing manoeuvre. In a meeting manoeuvre, the force and moment on
the slower body increase with their relative velocity significantly faster than those
on the faster body. In a passing manoeuvre, the force and moment on the slower
body increase with the relative velocity, whereas the force and moment on the faster
body decreases with the relative velocity. Consequently, the slower body experiences
much larger force and moment in both cases. In particular, when one body translates
alone and the other is stationary, the force and moment on the stationary body are
significantly larger than those on the translating one.

(4) The forces and moments on both bodies increase with their sizes and proximity.
The peak attraction on each body increases faster with their sizes and proximity than
the peak repulsion does, and the period of attraction increases too. The force on
one body decreases with its angle of yaw and that of the other body during the
first half of the passing period, but increases with the two angles during the second
half.

To obtain the analytical flow solution, the analysis assumes circular cross-sections.
However, using the two-dimensional boundary element method the procedure can
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be generalized to arbitrary cross-sections. Another possible extension is to include
the higher-order approximation following the corresponding works for single slender
body (cf. Van Dyke 1959).
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Methods, Inc. (AMI) for his valuable help in providing the simulation results using
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Appendix. The derivation of (47)
To calculate the three integrals in (42) along the periphery C1 of the cross-section of

body 1 in the cross-flow plane Q, we transform them to those along the corresponding
circle D1 in the mapped plane ζ as follows:

J1 =

∮
C1

φ sin θdl =

∮
D1

φ sin θJdl, (A 1)

J2 =

∮
C1

φ cos (2θ ) dl =

∮
D1

φ cos (2θ ) Jdl, (A 2)

J2 =
1

2

∮
C1

((
∂φ

∂R

)2

+
1

R2

(
∂φ

∂θ

)2)
sin θdl

=
1

2

∮
D1

((
∂φ

∂ρ

)2

+
1

ρ2

(
∂φ

∂Θ

)2)
sin θJ −1dl, (A 3)

where J = |dQ/dζ |, sin θ and cos(2θ) on D1 can be obtained from the conformal map-
ping (29)–(30)

J |D1
=

2

∆
, (A 4)

sin θ |D1
= −2eβ − (e2β + 1) cos Θ

∆
, (A 5)

cos(2θ )|D1
=

−e−2β

2

(
(e4β + 1) − 2

(e2β + 1)(e2β − 1)2

∆
+

(e2β − 1)4

∆2

)
, (A 6)

where ∆ =e2β − 2eβ cos Θ + 1.
To calculate the integrals in (A 1)–(A 3), we expand ϕ, ϕΘ and ϕρ on D1 in terms

of Fourier series in Θ using (34)

φ|D1
= −2S1 log ρ1 + 2

∞∑
n =1

an cos(nΘ)e−nβ, (A 7a)

φΘ |D1
= −2

∞∑
n=1

nan sin(nΘ)e−nβ, (A 7b)

ρφρ |D1
= b0 + 2

∞∑
n=1

bn cos(nΘ)e−nβ, (A 7c)

where an and bn are given in (48).
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To calculate J1, we express J sin θ on D1 as follows, using (A 4), (A 5):

(J sin θ)|D1
= −2eβ − (e2β + 1) cosΘ

∆2
= e−β

∞∑
n=1

ne−nβ cos(nΘ). (A 8)

Substituting (A 7a), (A 8) into (A 1) yields

J1 = 2C

∫ 2π

0

( ∞∑
n=1

ne−nβ cos (nΘ)

) (
−2S1 log ρ1 + 2

∞∑
n=1

ane
−nβ cos (nΘ)

)
dΘ

= 4C

{
−S1 log ρ1

∞∑
n=1

(ne−nβ

∫ 2π

0

cos(nΘ) dΘ

)

+

∞∑
n,m=1

(
name−(n+m)β

∫ 2π

0

cos(nΘ) cos(mΘ) dΘ

)}
= 4πC

∞∑
n=1

nane
−2nβ. (A 9)

In (A 9), we have used the following integral formula:∫ 2π

0

cos (nΘ) cos (mΘ) dΘ = πδnm for n, m � 1, (A 10)

where δnm is the Kronecker delta, i.e. δnm = 0 for n �= m, and δnm =1 for n = m.
To calculate J2, we express J cos(2θ) on D1 as follows, using (A 4), (A 6):

J cos (2θ ) = 2

∞∑
n=1

fn cos (nΘ)e−nβ, (A 11)

where

fn =
n

eβ
(coshβ − n sinhβ). (A 12)

Substituting (A 7a), (A 11) into (A 2) yields

J2 = ρ1

∫ 2π

0

(
2

∞∑
n=1

fne
−nβ cos (nΘ)

)(
−2S1 log ρ1 + 2

∞∑
n=1

ane
−nβ cos (nΘ)

)
dΘ

= 4πρ1

∞∑
n=1

fnane
−2nβ = 4πC

∞∑
n=1

(coshβ − n sinh β) ane
−2nβ. (A 13)

To calculate J3, we need to calculate the integrant. Using (A 4), (A 5), we have

(J −1 sin θ )|D1
= −eβ(1 − coshβ cos Θ). (A 14)

Using (A 7b), (A 7c), we have(
ρ2

(
∂ϕ

∂ρ

)2

+

(
∂ϕ

∂Θ

)2
)∣∣∣∣∣

D1

= 4

{ ∞∑
n=1

nan sin(nΘ)e−nβ

}2

+

{
b0 + 2

∞∑
n=1

bn cos(nΘ)e−nβ

}2

= b2
0 + 4b0b1e

−β cos Θ + 2

∞∑
n=1

∞∑
m=1

e−(n+m)β {bnbm [cos ((n + m) Θ) + cos ((n − m) Θ)]

+ (nmanam) [cos ((n − m) Θ) − cos ((n + m) Θ)]} . (A 15)
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Substituting (A 14), (A 15) into (A 3) yields

J3 =
1

2ρ1

∫ 2π

0

(
ρ2

(
∂ϕ

∂ρ

)2

+

(
∂ϕ

∂Θ

)2
)∣∣∣∣∣

D1

sin θJ −1 dΘ

=
1

2ρ1

∫ 2π

0

eβ(−1 + coshβ cos Θ)

(
b2

0 + 4b0b1e
−β cos Θ

+ 2

∞∑
n=1

∞∑
m=1

(nmanam + bnbm)e−(m+n)β cos((n − m)Θ)

+ 2

∞∑
n=1

∞∑
m=1

(−nmanam + bnbm)e−(m+n)β cos((n + m)Θ)

)
dΘ

=
2π

C

[
−2S2

1 − 2S1b1e
−β coshβ + 2

∞∑
n=1

[
coshβe−β(bnbn+1 + n(n + 1)anan+1)

− n(n + 1)
(
b2

n + a2
n

)]
e−2nβ

]
. (A 16)

The following integral formulae have been used in the above equations:∫ 2π

0

cosΘ cos ((n + m) Θ) dΘ = 0, (A 17a)∫ 2π

0

cos Θ cos ((n − m) Θ) dΘ =

{
0 for |n − m| �= 1,

π for n = m ± 1,
(A 17b)

for n, m �1.
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